

Bayer's responsible approach to Nano based innovations

Dr. Péter Krüger Bayer Working Group Nanotechnology Milano, 02. December 2010

Working Group Nanotechnology

Driving forces for Innovation: Technology challenges of the society

- Environment/Climate
- Resources
- CO₂-Prevention
- Energy:
 - Conversion
 - Storage
 - Saving
 - Transport
- Mobility
- Health Care
- Nutrition
- Security
- Information/ Communication

Bayer MaterialScience

Innovation is consisting of: Research, Development and Viable Commercialization:

Approaches to address technology related challenges and needs in the society

- Optimized use and combination of existing established technical solutions
 - Solar Impulse (B. Piccard www.solarimpulse.com)
 Once around the world in a manned airplane powered only by solar energy.
 Need for efficient energy
 - Conversion (photovoltaic),
 - Storage (battery),
 - use (light weight)
 - Develop new technology options for relevant applications
 - Nanotechnologies
 - Materials technology

Nanomaterials

+

Nanoscale and Nanotechnology

Nanotech: purposeful tool or process to engineer matter on a scale between appr. 1 and 100 nm, to achieve modified or new sized dependent properties

The Economic Visions on Nanotechnolgy: Markets for Nano-based Value-Chains

Working Group Nanotechnology Dr. Péter Krüger • October 2010 • Seite 6 Renzo Tomellini, DG Research / Lux Research

The Economic Visions on Nanotech: Jobs

Working Group Nanotechnology Dr. Péter Krüger • October 2010 • Seite 7

Government Nanotech Funding 2005-2007 Developing Countries are catching up

Carbon Structures

Carbon Structures

Carbon Nanotubes – posses superior

- Electrical conductivity
- Mechanical strength
- Heat conductivity
- Chemical resistivity

and

- Low macroscopic density
- High surface area

Carbon nanotubes - on industrial scale

Commercialization requirements:

- Cost-effective manufacturing process
- High product purity even without post-purification
- Reproducible quality
- Reliable supply situation (incl. HSE)

Status:

- Estimated world wide production capacities for SWCNT in the range of few t/y
- Announced existing world wide production <u>capacities</u> in 2010 in the range of ca. 800 – 1000 t/y
- Announced world wide MWCNT production capacities for 2012 in the range of ca. 1500 – 2000 t/y
- Main player for MWCNT: Arkema (F), Bayer MaterialSciences (D), CNano (US/C), Hyperion (US), Nanocyl (B)
- Target: Development of hybrid materials with extraordinary mechanical, electrical, thermal and physico-chemical properties

Ice hockey sticks from Montreal Sports Oy, Finland, made from an innovative composite material based on CNTs

CNT Dispersion is Key, Challenge across the value chain:

Potential use of CNTs for sustainable supply and use of energy in the future

Energy - Conversion

Efficient use of wind energy (wind) **Efficient lighting/displays** Solar cells

Energy - Transport

Efficient use of heat conductivity -Under-floor heating -Windshield defroster heating **Microwave antennas Electrical circuits**

Energy - Storage

Working Group Nanotechnology Dr. Péter Krüger • October 2010 • Seite 13

Energy - Saving

Lightweight materials for construction and transportation Low rolling resistance tires / rubber **Efficient production processes** -Catalysis -Electrostatic coating Components

Bayer MaterialScience peter.krueger@bayer.com

Energy efficiency of windturbines

Increase of efficiency by enlarged span of blades

Technical Challange:

The maximum strength of materials limits the size of windblades

Approach:

Reinforcement of materials by means of mixing with high strength additive, e.g. such as CNT

Approach to address technology challenges for sustainable energy conversion: Wind turbines

Innovation Alliance CNT: Cross-sectional platform technologies as a basic fundament for application projects

Innovation Alliance CNT: Application Examples for Automobiles

Innovation Alliance CNT:

covered by projects in Inno.CNT

Product Stewardship for Nanomaterials at Bayer

Safety research is an essential part of the innovation - strategy

Urgent Societal Needs and Challenges Nanotechnology as a Cross-Sectional Platform

Nanotech is an Enabling Technology along the value chain

Nanotech is in competition with established classical technologies

Financial Sector
Insurances
Legal- Sector (IP, registration, negotiations,)

Working Group Nanotechnology

Dr. Péter Krüger • October 2010 • Seite 22

peter.krueger@bayer.com

Bayer MaterialScience

Thanks for your attention!

Nanotech is Powerful

Working Group Nanotechnology

Dr. Péter Krüger • October 2010 • Seite 23

Bayer MaterialScience

Nanotechnology at Bayer

Acknowledegements

The author gratefully acknowledge the kind support by the Working Group Nanotechnology at Bayer

Contact

Dr. Péter Krüger Bayer MaterialScience AG Coatings, Adhesives & Sealants 51368 Leverkusen, Bldg. Q 23 Phone: (+49) 214-30-53647 peter.krueger@bayerbms.com

Working Group Nanotechnology Dr. Péter Krüger • October 2010 • Seite 24

