Emilio BENFENATI

Istituto di Ricerche Farmacologiche Mario Negri Laboratory of Environmental Chemistry & Toxicology

Rethinking the equation REACH = Regulation 15 dicembre 2011

La nuova piattaforma VEGA per i metodi di non-testing

Alternative Non-Testing methods Assessed for REACH Substances

LIFE08 ENU/IT/000435

www.antares-life.eu

Organising dissemination on Results of projects on CHemicals Evaluation, Spreading Techniques for Risk Assessment

www.orchestra-qsar.eu

AND

According to REACH regulation (Annex XI) a (Q)SAR is VALID if:

- the model is recognized scientifically valid;
 the substance is included in the applicability domain of the model;
 results are adequate for classification and labelling and for risk assessment;
 - adequate documentation of the methods provided.

www.vega-qsar.eu

www.vega-qsar.eu

- To increase the documentation about the QSAR results
- To provide guidance on the reliable use of QSAR
- To make explicit when results are questionable
- To combine the experience of the models developers, of the model expert users, and of the stakeholders
- The establish a network about the improvement of the QSAR acceptance
- To incorporate stakeholder needs

(Q)SAR

(QUANTITATIVE) STRUCTURE-ACTIVITY RELATIONSHIP

(Q)SAR SIMILAR TO READ-ACROSS VEGA COMBINES THEM

	Chemical 1	Chemical 2	Chemical 3	Chemical 4	"category" of substances
Property 1		0		0	
Property 2					Reliable data points
Property 3	0			0	Missing data points

VEGA STRATEGY

- VEGA combines QSAR and read across
- QSAR and read across are based on independent software
- VEGA automatically evaluates the prediction reliability
- Effort to make objective some evidences
- VEGA assists the human expert
- VEGA = collaboration between computer and expert
- The user should always use its/her experience
- Expert can override QSAR using read across

THE VEGA OUTPUT

- Summary: value and reliability
- Uncertainty and possible uses
- The applicability domain: visualisation and score
- The documentation and reasoning: specific features and general parameters
- The references

> THE APPLICABILITY DOMAIN INDEX

The different checks done for the Applicability Domain

- Visualisation of similar substances
- Similarity index (chemical; sub-indices)
- Chemiometric check (descriptor space)
- Atom centred-fragment (chemical)
- Check of the descriptor sensitivity (algorithm)
- Uncertainty (algorithm)
- Fragments for outliers (output space)
- Prediction Accuracy (output space)
- Prediction Concordance (tox exploration)

> THE APPLICABILITY DOMAIN INDEX

Compound: 138 Compound SMILES: C(C(CBr)Br)Cl Prediction: 1.649 [log units] Prediction: 45 [L/Kg] Prediction from model 1 (HM): 1.754 [lc Prediction from model 2 (GA): 1.614 [lo Structural Alerts: -Calculated LogP: 2.957 [log units] Experimental value: -Reliability: Compound could be out of n Remarks for the prediction:

	Global AD Index AD Index = 0.7
	Explanation: predicted substance could be out of the Applicability Domain of the model.
V	Similar molecules with known experimental value Similarity index = 0.753
	Explanation: strongly similar compounds with known experimental value in the training set have been found.
V	Accuracy (average error) of prediction for similar molecules Accuracy index = 0.295
	Explanation: accuracy of prediction for similar molecules found in the training set is good.
*	Concordance with similar molecules (average difference between target compound prediction and experimental values of similar molecules) Concordance index = 1.025
	Explanation: similar molecules found in the training set have experimental values that completely disagree with the target compound predicted value.
	Maximum error of prediction among similar molecules
	Explanation: the maximum error in prediction of similar molecules found in the training set has a low value.
	Atom Centered Fragments similarity check
~	ACF matching index = 1 Explanation: all atom centered fragment of the compound have been found in the compounds of the training set.
V	Descriptors noise sensitivity analysis Noise Sensitivity = 0.922
	Explanation: predictions has a good response to noise scrambling, thus shows a good reliability.
	Model descriptors range check
	Descriptors range check = true
~	Explanation: descriptors for this compound have values inside the descriptor range of the compounds of the training set.

ADI : SIMILARITY SEARCH

Prediction for the compound no. 1: Cc1ccc2Nc3c4CC(Oc4cc(O)c3C(=O)c2c1)C1(C)CO1

Activity: Mutagen Remarks for the prediction:	
VISUALIZATION OF SIMILAR SUBSTANCES	

ADI : UNCERTAINTY

CAESAR QSAR model for Carcinogenicity - version 1.0

Prediction for the compound no. 1: CCC1=NN(C)C(C(=O)NCC2=CC=C(C=C2)C(C)(C)C)=C1Cl

SADI : ACCURACY PREDICTION FOR SIMILAR MOLECULES

Prediction for the compound no. 1: CN(C)C(=O)NC1=CC(C1)=C(C)C=C1

ADI : CONCORDANCE

WITH EXPERIMENTAL VALUE OF SIMILAR COMPOUNDS

CAESAR QSAR model for Carcinogenicity - version 1.0

Prediction for the compound no. 1: CN(C)C(=O)NC1=CC(C)=C(C)C=C1

Carcinogenic: Non-Positive Class indices: Positive=0.079, Non-Positive=0.921 Remarks for the prediction:

if the ADI is higher, the error is lower

ADI : ADEQUATE MODEL

Evaluation of the Bioaccumulation threshold (2000 = 3.3 l.u.)

B threshold evaluation (3.3 l.u.)

No. Com	n. = 492	Exp. logBCF		
		nB	B/vB	
Pred.	nB	359	0	
logBCF	B/vB	60	73	

SUPPORTING DOCUMENTATION OVERVIEW OF THE DESCRIPTORS logP and BCF

SUPPORTING DOCUMENTATION DETAIL ON SIMILAR COMPOUNDS

Emilio BENFENATI

Istituto di Ricerche Farmacologiche Mario Negri Laboratory of Environmental Chemistry & Toxicology

61 Cursto 2

